Efficiently measuring recognition performance with sparse data.

نویسندگان

  • Lael J Schooler
  • Richard M Shiffrin
چکیده

We examine methods for measuring performance in signal-detection-like tasks when each participant provides only a few observations. Monte Carlo simulations demonstrate that standard statistical techniques applied to a d' analysis can lead to large numbers of Type I errors (incorrectly rejecting a hypothesis of no difference). Various statistical methods were compared in terms of their Type I and Type II error (incorrectly accepting a hypothesis of no difference) rates. Our conclusions are the same whether these two types of errors are weighted equally or Type I errors are weighted more heavily. The most promising method is to combine an aggregate d' measure with a percentile bootstrap confidence interval, a computer-intensive nonparametric method of statistical inference. Researchers who prefer statistical techniques more commonly used in psychology, such as a repeated measures t test, should use gamma (Goodman & Kruskal, 1954), since it performs slightly better than or nearly as well as d'. In general, when repeated measures t tests are used, gamma is more conservative than d': It makes more Type II errors, but its Type I error rate tends to be much closer to that of the traditional .05 alpha level. It is somewhat surprising that gamma performs as well as it does, given that the simulations that generated the hypothetical data conformed completely to the d' model. Analyses in which H--FA was used had the highest Type I error rates. Detailed simulation results can be downloaded from www.psychonomic.org/archive/Schooler-BRM-2004.zip.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

A New IRIS Segmentation Method Based on Sparse Representation

Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...

متن کامل

Hand Posture Recognition via Sparse Representation

We propose a new method for hand gesture recognition via sparse representation. Initially, we present the region of the hand is detected based on skin color segmentation in the YCbCr color space and image normalization. Then, the recognition of hand posture is casted as the sparse representation of a test image with a set of the database images. The l1minimization is applied to accurately and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Behavior research methods

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 2005